
2026/02/04 10:38 1/8 EMS <> Adapter <> NetIO <> Raspi

- https://mywiki.thefischer.net/

EMS <> Adapter <> NetIO <> Raspi

Wer zu den bedauernswerten Menschen gehört, die von IngoF kein Gateway abbekommen haben,
muss dennoch nicht verzweifeln.
Mit Hilfe von Pollins AVR NetIO lässt sich für kleines Geld eine passable Schnittstelle zwischen EMS
und Ethernet erstellen. Was im Einzelnen zu tun ist, soll hier kurz vorgestellt werden.

N.b.: Selbst Ingos EMS-GW kann mit der Firmware 2.1.1 und einem ENC28J60 Netzwerkmodul
verwendet werden. So kann man auch über das EMS-GW das neue Frontend von Moosy benutzen.

Schema

Vorab eine Schemazeichnung zum besseren Verständnis:

 +---------+ +---------+ +-------+
 | Buderus |---EMS-RC-(2pol)---| Adapter |---(10pol)---| NetIO |---LAN-->
 +---------+ +---------+ +-------+

 +---------+
 | Raspi |---LAN-->
 +---------+

Adapter

Hardware

Wie oben bereits angedeutet, braucht es zunächst einen Adapter, der die EMS-Signale für den UART
des NetIO aufbereitet. Wir bedienen uns hier Niffkos Schaltplan. Hinzu kommen noch einige Leds zur
Signalisierung der empfangenen / gesendeten Telegramme, ein Wannenstecker für die Verbindung
zum NetIO und unser neuer Schaltplan liest sich wie folgt: Alle Verbindungen zwischen Adapter und
NetIO (Ext) verlaufen über die 2x 5 poligen Pfostenbuchsen. Außerdem wurde die 1-Wire-Schnittstelle
des NetIO herausgeführt. Bei diskretem (through hole) Aufbau können die vier parallelen Widerstände
im Sendeteil mit jeweils 910R problemlos gegen einen 1-Watt Widerstand mit 220R getauscht
werden. Wer Strom sparen will, wählt höhere Vorwiderstände für die Leds.
Eine Eagle-Schaltplanvorlage gibt es hier, eine "Blackboard Breadboard Designer" Vorlage für den
diskreten Aufbau auf Lochrasterplatine findet sich hier. Ein Reichelt Warenkorb (Stand: Juni 2014)
verbirgt sich hier. Wer den AVR-Net-IO bei Pollin bestellt, bekommt die Bauteile in der Regel auch
dort. Die Platinenmaße entsprechen denen des NetIO, so daß die beiden Platinen „gesandwiched“
werden können.
Hier die Vorder- und Rückseite (nicht gespiegelt!) der Lochrasterplatine:

(Achtung Fehlerteufel: Die Anoden von D1 und D3 müssen beide mit GND verbunden sein. Siehe

https://mywiki.thefischer.net/doku.php?id=wiki:ems:firmware21
http://www.mikrocontroller.net/topic/141831#1976381
https://mywiki.thefischer.net/lib/exe/detail.php?id=wiki%3Aems%3Anet_io&media=wiki:ems:ems-netio.png
https://mywiki.thefischer.net/lib/exe/fetch.php?media=wiki:ems:ems-avr-io-20130118a.zip
https://github.com/mpue/blackboard
https://mywiki.thefischer.net/lib/exe/fetch.php?media=wiki:ems:ems-netio-20131010.zip
https://secure.reichelt.de/index.html?&ACTION=20&AWKID=1000020&PROVID=2084
https://mywiki.thefischer.net/lib/exe/detail.php?id=wiki%3Aems%3Anet_io&media=wiki:ems:back.png
https://mywiki.thefischer.net/lib/exe/detail.php?id=wiki%3Aems%3Anet_io&media=wiki:ems:front.png

Last update: 2015/02/24 21:35 wiki:ems:net_io https://mywiki.thefischer.net/doku.php?id=wiki:ems:net_io&rev=1424810154

https://mywiki.thefischer.net/ Printed on 2026/02/04 10:38

Detailbild. Danke für den Hinweis, Lorgru!)

So, oder so ähnlich sieht die fertige Platine aus. Genügend Platz für überdimensionierte Bauteile
aus der Bastelkiste ist jedenfalls vorhanden und die drei Leds haben sich auf dem Photo hinter dem
Kabel versteckt.

Maciej Piliński hat sich die Mühe gemacht und eine Eagle-Vorlage entworfen. Näheres samt Download
findet Ihr im Thread unter: http://www.mikrocontroller.net/topic/318364#3610939.

NetIO

Hardware

Den NetIO gibt es bei Pollin. Der auf dem Bord befindliche ATmega32 wird gegen einen
ATmega644P-20PU getauscht. Der hat eine zweite, freie serielle Schnittstelle, die nicht wie USART0
durch einen MAX232 versperrt ist. Die Stromversorgung erfolgt energie- und kostensparend über ein
Stecker-Schaltnetzteil mit 5V/1A an der Buchse „J6“ des NetIO. Sonstige Um- und Ausbauten am
NetIO, für die es in den einschlägigen Foren unzählige Vorschläge gibt, sind bei einer stabilen
Stromversorgung des Boards nach den Erfahrungen des Autors nicht erforderlich.

Software

Als Software dient Ethersex, den Download gibt's auf GitHub. Im Ethersex-Wiki findet sich die
Installations- und Konfigurationsanleitung, so dass wir uns hier kurz fassen können. Danny Baumann,
im Folgenden „Danny“ genannt, hat seinen „ems-framer“ bereits in Ethersex integriert, also haben
wir es recht einfach. Danke Danny!

Nach Aufruf des Konfigurationsmenüs „make menuconfig“ sollte wie folgt ausgewählt werden:

General Setup --->
 (AVR) Target Architecture
 (ATmega644p) Target MCU
 (16000000) MCU frequency
 (Netio) Hardware/Periphery Class
 [*] Status LEDs --->
 [*] Status LED (Transmitted)
 [*] EMS TX
 [*] Status LED (Received)
 [*] EMS RX OK
 [*] Status LED (Error)
 [*] EMS RX Failure
 [*] VFS (Virtual File System) support --->
 [*] VFS File Inlining --->
 [*] Inline IO

http://www.mikrocontroller.net/topic/318364#3610939
https://mywiki.thefischer.net/lib/exe/detail.php?id=wiki%3Aems%3Anet_io&media=wiki:ems:ems-adapter.jpg
http://www.pollin.de/shop/dt/MTQ5OTgxOTk-/Bausaetze_Module/Bausaetze/Bausatz_AVR_NET_IO.html
http://ethersex.de
https://github.com/ethersex/ethersex/archive/master.zip
http://ethersex.de/index.php/Quick_Start_Guide

2026/02/04 10:38 3/8 EMS <> Adapter <> NetIO <> Raspi

- https://mywiki.thefischer.net/

 [*] Inline ADC
 [*] Inline OneWire
 [*] Support Inline SVG

Network --->
 Hostname: "EMS"
 (500) Network Buffer Size
 [*] Ethernet (ENC28J60) support --->
 MAC address: "hier die MAC-Adresse vom Aufkleber des ATmega32 eintragen"
 --- Static IPv4 configuration
 - IP address: "192.168.xxx.xxx"
 - Netmask: "255.255.255.0"
 [*] TCP support
 [*] ICMP support

I/O --->
 (Simple) I/O abstraction model (Port I/O)
 [*] Onewire support --->
 [*] Onewire device detection support

Protocols --->
 [*] ECMD (Ethersex Command) support --->
 [*] TCP/Telnet
 (2701) TCP Port
 [*] EMS Support --->
 (64) EMS Buffer Length
 (7950) EMS TCP Port
 [*] Statistics ECMD

Applications --->
 [*] System clock support --->
 [*] Date and Time support
 Timezone --->
 (60) Local time offset to UTC (minutes)
 --- Daylight saving
 (60) Time offset (minutes)
 --- Begin of daylight saving
 (3) Month (1-12)
 (5) Week (1-5)
 (0) Day of week (0-6)
 (2) Hour (0-23)
 --- End of daylight saving
 (10) Month (1-12)
 (5) Week (1-5)
 (0) Day of week (0-6)
 (3) Hour (0-23)
 [*] HTTP Server --->
 (80) HTTP port (default 80)
 (8000) HTTP alternative port (default 8000)

AVRDUDE configuration --->

Last update: 2015/02/24 21:35 wiki:ems:net_io https://mywiki.thefischer.net/doku.php?id=wiki:ems:net_io&rev=1424810154

https://mywiki.thefischer.net/ Printed on 2026/02/04 10:38

 Falls Ihr mit AVRDUDE arbeitet:
 Euren Programmer auswählen.
 Die Fuses werden wie folgt belegt:
 (e7) Fuse Low Byte (FLB)
 (dc) Fuse High Byte (FHB)
 (ff) Extended Fuse Byte (EFB)

Achtung: Die „Status LEDs“ im „General Setup“ sind erst vollständig aktivierbar, nachdem der „EMS
Support“ unter „Protocols“ aktiviert wurde.

Nach Abschluß der Konfiguration sollte ein „make show-config“ das Folgende zeigen:

MCU: atmega644p
Hardware: netio

These modules are currently enabled:
======================================
 * ADC * ADC_INLINE * CLOCK * CLOCK_DATETIME * ECMD_PARSER * ECMD_TCP * EMS
* ENC28J60 * ETHERNET
 * HTTPD * ICMP * IPV4 * NET * ONEWIRE * ONEWIRE_DETECT *
ONEWIRE_DETECT_ECMD * ONEWIRE_INLINE
 * PORTIO_SIMPLE * STATUSLED_EMS_RX_FAIL * STATUSLED_EMS_RX_OK *
STATUSLED_EMS_TX * STATUSLED_ERROR
 * STATUSLED_RX * STATUSLED_TX * TCP * UIP * VFS * VFS_INLINE *
VFS_INLINE_INLINESVG * VFS_IO_INLINE

Selbstverständlich können weitere Module hinzukonfiguriert werden. ADC, der Webserver (HTTPD),
OneWire und VFS sind für EMS nicht erforderlich und können abgewählt werden. Alles ganz nach
Belieben.

Vor dem Kompilieren sind noch folgende Änderungen in „./pinning/hardware/netio.m4“
vorzunehmen:

ifdef(`conf_ONEWIRE', `dnl
 /* onewire port range */
 ONEWIRE_PORT_RANGE(PD5, PD5)
')dnl

ifdef(`conf_EMS', `
 pin(EMS_UART_TX, PD3)
')
ifdef(`conf_STATUSLED_EMS_TX', `
 pin(STATUSLED_EMS_TX, PD4, OUTPUT)
')
ifdef(`conf_STATUSLED_EMS_RX_OK', `
 pin(STATUSLED_EMS_RX_OK, PD6, OUTPUT)
')
ifdef(`conf_STATUSLED_EMS_RX_FAIL', `
 pin(STATUSLED_EMS_RX_FAIL, PB0, OUTPUT)
')

2026/02/04 10:38 5/8 EMS <> Adapter <> NetIO <> Raspi

- https://mywiki.thefischer.net/

Die Portbelegung des ATmega644p stellt sich jetzt wie folgt dar:
PD2 = RX
PD3 = TX
PD4 = Led TX
PD5 = 1-Wire
PD6 = Led RX ok
PD7 = frei
PB0 = Led RX fail

Jetzt noch ein „make“ absetzen und fertig ist der Hexfile „ethersex.hex“. Der wird jetzt in den
ATmega644p gebrannt.

HexFile

Einen fertigen Hexfile gibt es hier.

Bitte beachten! Die einkompilierte IP-Adresse ist 192.168.0.0, die MAC ist FF:FF:FF:FF:FF:FF
(Broadcast).

Das solltet Ihr entsprechend ändern! Bei laufendem NetIO geht das per Browser wie folgt:

http://192.168.0.0/ecmd?mac „neue MAC“ (ohne „“, die MAC Eures NetIO findet Ihr auf dem
Aufkleber des mitgelieferten ATMega32)
http://192.168.0.0/ecmd?ip „neue IP“ (ohne „“).
http://192.168.0.0/ecmd?gw „Eure Gateway IP“ (ohne „“).

Ein „…/ecmd?help“ zeigt alle verfügbaren Befehle, weitere Hinweise zur „ecmd“ Syntax findet Ihr
hier.

Abschließend bitte noch mal die „Fuses“ kontrollieren. Sie sollten wie folgt eingestellt sein:
Fuse Low Byte (FLB) = e7, Fuse High Byte (FHB) = dc, Extended Fuse Byte (EFB) = ff.

Raspberry Pi

Hardware

Ja klar, es muss nicht unbedingt ein Raspberry sein. Aber, der ist klein, stromsparend und bringt alles
mit, was man für einen HomeServer so braucht. Wie man den Raspi auf Touren bringt, das findet sich
im Netz, z.B. hier. Meine Himbeertorte läuft „headless“, mit WinSCP kann man auch von einer
Windows Umgebung problemlos auf den Raspi zugreifen.

Software

Hier werkelt ein Raspbian. Das hat den Vorteil, dass nicht viel konfiguriert und gebastelt werden
muss und man sich aus den Wheezy-Quellen bedienen kann. Den Download gibt's hier.

Wenn der Raspi mit der Standardsoftware läuft, holen wir uns noch folgende Bibliotheken:

https://mywiki.thefischer.net/lib/exe/fetch.php?media=wiki:ems:ems-netio-644p-deploy.zip
http://192.168.0.0/ecmd?mac
http://192.168.0.0/ecmd?ip
http://192.168.0.0/ecmd?gw
http://www.ethersex.de/index.php/ECMD_Reference
http://www.raspberrypi.org/quick-start-guide
http://winscp.net/eng/docs/lang:de
http://www.raspberrypi.org/downloads

Last update: 2015/02/24 21:35 wiki:ems:net_io https://mywiki.thefischer.net/doku.php?id=wiki:ems:net_io&rev=1424810154

https://mywiki.thefischer.net/ Printed on 2026/02/04 10:38

root> apt-get update
root> apt-get upgrade
root> apt-get install build-essential libboost1.50-all mysql-server mysql-
client libmysql++ php5-mysql
root> apt-get install git telnet php5 php5-cgi gnuplot

(Anm.: Bei einigen läuft es nur mit der libboost1.49-all. Fragt mich nicht warum.)

Als Webserver empfehle ich Lighttpd, der ist klein und dennoch performant. Wie der auf dem Raspi
installiert wird, findet sich hier. Die Einrichtung von lighttpd ist in Lighttpd PHP fastcgi configuration
beschrieben.

Zum Einsatz für EMS kommt wieder mal Dannys Software, die gibt es per git bei GitHub, oder als
Download.(zip).

Im Verzeichnis „ems-collector[-master]“ findet Ihr die Ordner „collector“, „framer“, „tools“ und
„webpage“. Den „framer“ brauchen wir hier nicht, den haben wir mit Ethersex auf den NetIO schon
abgefrühstückt.

Im Ordner „collector“ liegen die ems-collector Quelldateien. Ein „make“ sollte die ausführbare Datei
„collectord“ erzeugen. Bis der Raspberry das erledigt hat, könnt Ihr Euch eine Tasse Kaffee
genehmigen.

Falls alles ordnungsgemäß geklappt hat, könnt Ihr auf der Konsole mit einem „collectord -h“ die
Startoptionen anschauen.
Für einen ersten Test starten wir den ems-collector mit „collectord -u ems -p geheim -f -d all
tcp:192.168.xxx.xxx:7950“, wobei
„ems“ für den mysql-user,
„geheim“ für das mysql-password steht.
Auf der Konsole tanzen jetzt die EMS-Telegramme und eventuelle Debug-Meldungen.

Hinweis: Die mysql-Datenbank findet sich im Verzeichnis "/var/lib/mysql/ems_data".

Zur Konfiguration des ems-collector kopieren wir die Datei „ems-collector-master/tools/ems-
collector.default“ nach „/etc/default“, benennen sie um in „ems-collector“ und ändern den Inhalt wie
folgt, nicht ohne vorher die mysql-Anmeldeparameter zu ändern:

Defaults file for EMS collector daemon
This is a POSIX shell fragment

if you need further configuration
config file location
CONFIGFILE="/etc/ems-collector.conf"

Serial device file
SERIALDEVICE="/dev/ttyUSB0"

Where to put the PID file
PIDFILE="/var/run/ems-collector.pid"

http://www.lighttpd.net/
http://www.penguintutor.com/linux/light-webserver
http://www.cyberciti.biz/tips/lighttpd-php-fastcgi-configuration.html
https://mywiki.thefischer.net/doku.php?id=git_clone_git:github.com_maniac103_ems-collector
https://github.com/maniac103/ems-collector/archive/master.zip

2026/02/04 10:38 7/8 EMS <> Adapter <> NetIO <> Raspi

- https://mywiki.thefischer.net/

Other options -- command-port, data-port, db-user, db-pw, rate-limit (s)
to write to db, target
For debugging purposes insert "-d all=/var/log/ems-collector.log" before
"tcp:...."
OPTIONS="-C 7777 -D 7778 -u ems -p password -r 60 tcp:192.168.xxx.xxx:7950"

Damit der ems-collector nach einem Neustart des Raspberry auch anläuft oder auf Befehle hört, wie:
„service ems-collector start|stop|restart|condrestart|status“,
müssen wir noch die Datei „ems-collector-master/tools/ems-collector.init“ nach „/etc/init.d“ kopieren,
dort in „ems-collector“ umbenennen und ausführbar machen. Gegebenenfalls ist in Zeile 21 noch der
Pfad anzupassen. Schließlich bindet ein „update-rc.d ems-collector defaults“ den collectord in die
Startscripte ein.

Jetzt noch die Dateien aus dem Webpage-Ordner in den Server-Ordner „srv/www“ o.ä. kopieren und
dort nach Eurem Gusto anpassen. (Siehe hierzu auch: Tipps - Neues Frontend)

Alternativ könnt Ihr Euch auch mit telnet auf den Port 7777 des Rechners, auf dem der Collector läuft,
verbinden „telnet localhost 7777“, und darüber Parameter setzen oder auslesen. Einfach mal
„help“ eingeben, um zu sehen, welche Befehle unterstützt werden.

Tipps

Neues Frontend

Inzwischen, Mitte März 2014, hat Michael Moosbauer (moosy) Dannys collector „aufgebohrt“ und
zusätzlich ein tolles Frontend entwickelt. Das findet Ihr mit allen zugehörigen Dateien auf Github.

MySql Benutzer anlegen

pi> sudo mysql -u root -p
mysql> select password('password');
+---+
| password('password') |
+---+
| *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 |
+---+
1 row in set (0.00 sec)

mysql> create user ems identified by password
'*2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19';
mysql> GRANT ALL ON ems_data.* TO 'ems'@'%';

Nachdem der collectord einmalig erfolgreich gestartet ist, wurden die nötigen Tabellen angelegt. Nun
könnte man dem Datenbank-Benutzer ems die Rechte wieder teilweise entziehen.

https://github.com/moosy

Last update: 2015/02/24 21:35 wiki:ems:net_io https://mywiki.thefischer.net/doku.php?id=wiki:ems:net_io&rev=1424810154

https://mywiki.thefischer.net/ Printed on 2026/02/04 10:38

Finito

Fragen, Anregungen, Ergänzungen und Korrekturen bitte im Thread absetzen oder am besten gleich
hier ändern. Falls Ihr Fehler findet, bitte behaltet sie nicht für Euch, sondern gebt Laut.

From:
https://mywiki.thefischer.net/ -

Permanent link:
https://mywiki.thefischer.net/doku.php?id=wiki:ems:net_io&rev=1424810154

Last update: 2015/02/24 21:35

http://www.mikrocontroller.net/topic/318364#new
https://mywiki.thefischer.net/
https://mywiki.thefischer.net/doku.php?id=wiki:ems:net_io&rev=1424810154

	EMS <> Adapter <> NetIO <> Raspi
	Schema
	Adapter
	Hardware

	NetIO
	Hardware
	Software
	HexFile

	Raspberry Pi
	Hardware
	Software
	Hinweis: Die mysql-Datenbank findet sich im Verzeichnis "/var/lib/mysql/ems_data".

	Tipps
	Neues Frontend
	MySql Benutzer anlegen

	Finito

